стр. 1
(всего 22)

СОДЕРЖАНИЕ

Вперед >>

А.В. Андрейчиков О.Н. Андрейчикова



АНАЛИЗ, СИНТЕЗ, ПЛАНИРОВАНИЕ РЕШЕНИЙ В ЭКОНОМИКЕ






Рекомендовано Министерством образования Российской Федерации в качестве учебника
для студентов высших учебных заведений, обучающихся по специальности "Информационные системы в экономике"









МОСКВА
"ФИНАНСЫ И СТАТИСТИКА-2000


РЕЦЕНЗЕНТЫ:



кафедра "Информационные системы в экономике"
Тверского государственного технического университета (зав. кафедрой доктор технических наук, профессор Б. В. Палюх);
зам. директора по научной работе Санкт-Петербургского института информатики и автоматизации РАН доктор технических наук, профессор А. В. Смирнов
Работа выполнена при финансовой поддержке Волгоградского государственного технического университета


ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ 1
К ЧИТАТЕЛЮ 2
ПРЕДИСЛОВИЕ 4
ГЛАВА 1. АНАЛИЗ ЗАДАЧ И МЕТОДОВ ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ 5
1.1. Эволюция теории принятия решений. ЭВМ в принятии решений 5
1.2. Схема процесса принятия решений 6
1.3. Классификация задач принятия решений 7
1.4. Классификация методов принятия решений 8
1.5. Характеристика методов теории полезности 10
ГЛАВА 2. ПРИНЯТИЕ РЕШЕНИЙ НА ОСНОВЕ МЕТОДА АНАЛИЗА ИЕРАРХИЙ 14
2.1. Иерархическое представление проблемы, шкала отношений и матрицы парных сравнений 14
2.2. Собственные векторы и собственные значения матриц. Оценка однородности суждений 17
2.3. Синтез приоритетов на иерархии и оценка ее однородности 19
2.4. Учет мнений нескольких экспертов 21
2.5. Методы сравнения объектов относительно стандартов и копированием 23
2.6. Многокритериальный выбор на иерархиях с различным числом и составом альтернатив под критериями 27
2.7. Методика решения прикладных задач на ЭВМ 32
2.7.1. Выбор и прогнозирование наилучшего обеспечения банковского кредита 32
2.7.2. Функционально-стоимостный анализ промышленной продукции 40
2.7.3. Рациональное распределение ресурсов между альтернативами 46
ГЛАВА 3. АНАЛИТИЧЕСКОЕ ПЛАНИРОВАНИЕ НА ОСНОВЕ МЕТОДА АНАЛИЗА ИЕРАРХИЙ 51
3.1. Принципиальные подходы к решению задач планирования 51
3.2. Представление процесса планирования в виде иерархии 52
3.3. Способы определения желаемых сценариев 59
3.4. Методика решения прикладных задач на ЭВМ 63
3.4.1. Прогнозирование профессиональной занятости населения крупных городов 63
3.4.2. Планирование предприятием производственной деятельности в условиях конкуренции 68
3.4.3. Планирование развития отрасли 75
ГЛАВА 4. МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ НА ОСНОВЕ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ 84
4.1. Элементы теории нечетких множеств 84
4.2. Нечеткие операции, отношения и свойства отношений 85
4.3. Многокритериальный выбор альтернатив на основе пересечения нечетких множеств 87
4.4. Многокритериальный выбор альтернатив на основе нечеткого отношения предпочтения 88
4.5. Многокритериальный выбор альтернатив с использованием правила нечеткого вывода 89
4.6. Многокритериальный выбор альтернатив на основе аддитивной свертки 91
4.7. Ранжирование альтернатив на множестве лингвистических векторных оценок 92
4.8. Методика решения прикладных задач на ЭВМ 93
4.8.1. Многокритериальный выбор методом максимннной свертки в сфере банковского кредитования 93
4.8.2. Выбор конкурентоспособного товара методом нечеткого отношения предпочтения 98
4.8.3. Метод нечеткого логического вывода в задаче выбора фирмой кандидата на замещение вакантной должности бухгалтера 100
4.8.4. Выбор фирмой стратегии расширения доли рынка методом аддитивной свертки 108
4.8.5. Выбор предприятия для кредитования методом лингвистических векторных оценок 110
4.8.6. Сравнительный анализ различных методов принятия решений 111
ГЛАВА 5. МЕТОДЫ КОМБИНАТОРНО-МОРФОЛОГИЧЕСКОГО АНАЛИЗА И СИНТЕЗА РАЦИОНАЛЬНЫХ СИСТЕМ 120
5.1. Классификация задач анализа и синтеза систем 121
5.2. Постановка задач анализа и синтеза систем 121
5.4. Кластерный анализ морфологических множеств 128
5.5. Синтез новых и рациональных систем на морфологических множествах 145
5.6. Методика решения прикладных задач на ЭВМ 167
5.6.1. Анализ и синтез систем на основе функционально-стоимостного подхода 167
5.6.2. Рациональное распределение ресурсов в системах 172
ГЛАВА 6. ЭВРИСТИЧЕСКИЕ МЕТОДЫ СИНТЕЗА СИСТЕМ 176
6.1. Классификация эвристических методов синтеза 177
6.2. Фонд эвристических приемов 178
6.3. Метод "мозгового штурма" 179
6.4. Методы ассоциаций и аналогий 180
6.5. Синектика 182
6.6. Методы контрольных вопросов и коллективного блокнота 182
6.7. Метод "матриц открытия" 183
6.8. Алгоритм решения изобретательских задач 183
6.9. Автоматизация эвристических методов синтеза новых систем 185
ГЛАВА 7. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ ПРИНЯТИЯ, ПЛАНИРОВАНИЯ И СИНТЕЗА РЕШЕНИЙ 190
7.1. Необходимость автоматизации процессов принятия, планирования и синтеза решений 191
7.2. Предпосылки создания диалоговых систем синтеза и принятия решений 191
7.3. Классификация систем принятия и синтеза решений 192
7.4. Принципы разработки программных средств 194
7.5. Основные правила разработки систем 194
7.6. Требования к методам защиты информации 195
7.7. Функции и структура автоматизированной системы принятия, планирования и синтеза решений 196
ПРИЛОЖЕНИЕ 200


К ЧИТАТЕЛЮ

Перед Вами, уважаемый читатель, учебник для экономической специальности "Информационные системы в экономике". Возможно, бегло пролистав его, Вы начнете сомневаться в его статусе и принадлежности. И в самом деле, учебник обычно пишется под утвержденную программу курса, а ее наличие Вам неизвестно (в действительности ее нет). Кроме того, оказывается, по Вашему мнению, что использованный математический аппарат по сложности существенно выше среднего, общепринятого для экономистов.
После того как я поделился подобными своими сомнениями в редакции, мне был задан вопрос: "А купили бы Вы этот учебник для себя?" Ответ был однозначным: "Купил бы и куплю при любой цене". И вот почему. Учебной программы и учебника нет. Но это не вина авторов. Возможно, их учебник и подтолкнет специалистов из Учебно-методического объединения при Министерстве образования Российской Федерации к разработке и утверждению программы.
Сложная математика, много формул? Но ведь это только для российских и других посткоммунистических экономистов, и то не для всех, она сложная. Когда в течение 75 лет основная задача нашей экономики состояла главным образом в объяснении уже принятых вышестоящим руководством решений, математике и ее прикладным возможностям не было места и ничего не оставалось, как заниматься не очень нужными практике, придуманными математиками самими для себя мало кому понятными моделями и алгоритмами. В зарубежной же науке никогда не было и нет деления на "экономику" (без математики) и "математическую экономику". Хорошее, близкое к требованиям математических факультетов университетов владение аппаратом экономико-математического моделирования — стандарт западного экономического образования.
По мере становления в нашей стране рыночной экономики ситуация начала меняться. Стало очевидным, что бизнес будет платить и уже во многих случаях платит за обоснованные расчетами и анализом (далеко выходящими за рамки четырех действий арифметики) инвестиционные проекты, прогнозы, рекомендации по снижению и предотвращению риска и пр. В этих условиях экономика от апологетико-вербальной ориентации начала поворачиваться к естественно-научным дисциплинам, хотя, конечно, никогда ее положения нельзя ставить в один ряд с точными законами естествознания.
Необходимость математизации экономики на современном этапе становится все более ясной не только ученым, но и практикам и, как следствие, руководителям системы высшего образования. Без этого невозможна интеграция нашей экономики в мировую экономическую систему: мы просто не будем их понимать. Однако, как и во многом другом, на этом пути есть свои проблемы.
Большинство наших экономистов не владеют в должной мере современными экономико-математическими методами. Отсюда трудности в качественной подготовке молодых кадров, боязнь формул. Совершенно неприемлемо, когда аспиранты (по специальности "Экономико-математические методы") допускают в диссертациях порой грубые математические ошибки, и последние исправляются по подсказке научного руководителя или оппонентов "в пожарном порядке".
Предлагаемый вниманию читателей учебник написан на высоком математическом уровне. Может ли он вызвать трудности при изучении методов компьютерного моделирования экономических процессов? Да, может. Прежде всего тем, что далеко выходит за рамки четырех действий арифметики. Он отражает чрезвычайно широкое проникновение экономико-математических методов во все сферы принятия решений, причем не только экономической ориентации. По этой причине его следует рекомендовать в первую очередь, как отмечают сами авторы, преподавателям и аспирантам. Тем и другим, скорее всего, потребуется еще адаптировать материал учебника к читаемым курсам, рабочим программам и уровням подготовки студентов, темам диссертаций аспирантов.
В чем специфика учебника?
При широком, воистину энциклопедическом охвате изучаемой проблематики изложение материала во многих местах, по-видимому, неизбежно становится поверхностным, обзорным, с необходимостью ссылок на дополнительные источники. Нарушается очень важный принцип самодостаточности учебника, причем многие из ссылок оказываются в настоящее время для разных категорий читателей практически недоступными. Например, при характеристике методов теории полезности, стремясь, вероятно, ничего не упустить, авторы сводят всю информацию о фундаментальном направлении — функции полезности по Дж. Нейману — О. Моргенштерну к краткой ссылке на их известную монографию. Но она издавалась у нас в стране в 1970 г. ("Теория игр и экономическое поведение": Пер. с англ. — М.: Наука). Где сейчас найти ее студентам? Эта теория и ее возможные прикладные направления в области моделирования рисковых ситуаций в экономике и бизнесе вполне заслуживают, по нашему мнению, самостоятельной публикации с должной адаптацией для студентов и аспирантов. То же можно сказать о нереализованных возможностях практических приложений теории нечетких множеств, например, в страховом деле или при оптимизации организационных структур — задач более важных, чем представленная в учебнике о замещении вакантной должности бухгалтера на фирме.
Это, безусловно, недостатки, которые могут поставить читателя перед определенными трудностями восприятия материала.. Однако достоинства учебника во много крат большие. Учебник написан математически грамотно, что для литературы по экономике, к сожалению, не всегда возможно считать само собою разумеющимся. Широк охват проблематики, где читатель может найти практически почти все, что в настоящее время относят к сфере моделирования управленческих решений.
Содержание учебника апробировано при чтении курсов "Методы теории принятия решений", "Информационные системы стратегического прогнозирования и планирования", "Математическое моделирование экономических процессов", "Теория оптимального управления экономическими процессами" по специальности "Информационные системы в экономике" в Волгоградском государственном техническом университете.
С учетом всех достоинств и недостатков, надо полагать, читатель сам сделает свой выбор.
Нам пора перестать различать экономику без математики и математическое в нее "вторжение". Экономика с той долей математики, которая диктуется содержательной сущностью проблемной области исследования, должна стать не только стандартом западного, но и, наконец, российского образования. Данный учебник вносит несомненный вклад в решение этой проблемы.

Б. А. ЛАГОША, доктор экономических наук, профессор


Нашим родителям посвящается

ПРЕДИСЛОВИЕ

Развитие микроэкономики, макроэкономики и прикладных дисциплин предполагает значительно более высокий уровень их формализации, определяемый прогрессом в области фундаментальной и прикладной математики — теории принятия решений, теории игр, математического программирования, математической статистики и др. В настоящее время экономическая теория на микро- и макроуровнях не может не включать в себя математические модели и методы как естественные и необходимые элементы.
В XX в. математические методы моделирования в экономике применялись широко и эффективно во многих странах мира. Разработчики этих методов были удостоены Нобелевской премии по экономике (Д. Хикс, Р. Солоу, В. Леонтьев, П. Самуэльсон, Л. Канторович и др.).
В последнее десятилетие российские ученые подготовили ряд учебников и пособий, направленных на повышение математической и компьютерной культуры нового поколения экономистов. Эта учебная литература широко используется при изучении различных экономических специальностей.
Сегодня любые предприятие, фирма или акционерное общество используют вычислительные машины в своей повседневной деятельности для ведения бухгалтерского учета, контроля за выполнением заказов и договоров, подготовки деловых документов. Помимо традиционных сфер применения ЭВМ по обработке рутинной информации, компьютер может оказывать существенную помощь человеку при решении творческих задач. К таким задачам можно отнести анализ, планирование и синтез рациональных решений при исследовании сложных систем в условиях неопределенности, когда недостаток информации компенсируется формализованно представленными знаниями экспертов. Одновременно возрастают необходимость в квалифицированных специалистах по экономической информатике и требования к уровню их подготовки. Такой специалист должен уметь формулировать требования к программным средствам, оценивать их качество и эффективность, выбирать программные средства, наиболее соответствующие запросам пользователей, разрабатывать новые программные продукты и уметь адаптировать готовые информационные системы к конкретным условиям применения.
Данный учебник может быть использован в курсах "Методы теории принятия решений", "Информационные системы стратегического прогнозирования и планирования", "Математическое моделирование экономических процессов", "Теория оптимального управления экономическими процессами" по специальности "Информационные системы в экономике". Учебник написан на основе преподавания этих дисциплин в Волгоградском государственном техническом университете.
В учебнике изложены основные методы анализа, планирования и синтеза рациональных решений в условиях неопределенности. Методы реализованы на ЭВМ и прошли практическую апробацию в различных сферах экономики и управления. Теоретический материал подкреплен практическими примерами, позволяющими лучше усвоить излагаемый материал. Приведены алгоритмы, которые могут реализовываться студентами на ЭВМ. В конце каждой главы для закрепления материала приводятся основные понятия, контрольные вопросы и задания по теме, а также список литературы.
Учебник может использоваться преподавателями, работающими в области компьютерного моделирования экономических процессов.
Книга будет полезной и руководителям различного ранга. В этой связи следует отметить, что описанные в книге системы целесообразно использовать для решения задач социально-экономического прогнозирования и планирования развития промышленных отраслей, предприятий и в других службах, образующих инфраструктуру городов, областей и регионов.
Авторы признательны рецензентам Московского государственного университета экономики, статистики и информатики, доктору экономических наук, профессору Б. А. Лагоше и кандидату технических наук, доценту А. А. Емельянову за ценные замечания, высказанные при прочтении рукописи учебника.
Авторы также благодарят ректора Волгоградского государственного технического университета доктора химических наук, профессора И. А. Новакова и доктора экономических наук, профессора Л. С. Шаховскую, активно способствовавших опубликованию учебника.

ГЛАВА 1.
АНАЛИЗ ЗАДАЧ И МЕТОДОВ ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ

Задача принятия решений (ЗПР) — одна из самых распространенных в любой предметной области [1 — 7]. Ее решение сводится к выбору одной или нескольких лучших альтернатив из некоторого набора. Для того чтобы сделать такой выбор, необходимо четко определить цель и критерии (показатели качества), по которым будет проводиться оценка некоторого набора альтернативных вариантов. Выбор метода решения такой задачи зависит от количества и качества доступной информации. Данные, необходимые для осуществления обоснованного выбора, можно разделить на четыре категории: информация об альтернативных вариантах, информация о критериях выбора, информация о предпочтениях, информация об окружении задач.

1.1. Эволюция теории принятия решений. ЭВМ в принятии решений

В своем развитии теория принятия решений прошла через три стадии.
На первой стадии развивался дескриптивный подход к принятию решений. Здесь усилия ученых были направлены на описание процесса выбора решений человеком в целях определения рационального зерна, характерного для всякого разумного выбора. В результате проведенных исследований оказалось, что большинство людей действуют интуитивно, проявляя при этом непоследовательность и противоречивость в своих суждениях. Положительным аспектом исследований в области дескриптивного подхода явилось то, что удалось дать достаточно четкий ответ на вопрос, что может и чего не может человек, решая задачу выбора [8].
На второй стадии исследователи разрабатывали нормативный подход к принятию решений. Однако и здесь их постигла неудача, поскольку идеализированные теории, рассчитанные на сверхрационального человека с мощным интеллектом, не нашли практического применения.
На третьей стадии был развит прескриптивный подход к принятию решений. Он оказался наиболее плодотворным, поскольку предписывал, как должен поступать человек с нормальным интеллектом, желающий напряженно и систематизированно обдумывать все аспекты своей задачи. Прескриптивный подход не гарантирует нахождения оптимального решения в любой ситуации, но обеспечивает выбор такого решения, которое не обременено противоречиями и непоследовательностями. Данный подход предъявляет к человеку серьезные требования по освоению методов и приемов теории принятия решений, а также предписывает проведение многочисленных вычислений, связанных с реализацией этих методов.
Первоначальным импульсом для применения ЭВМ в процессе принятия решений явилась необходимость проведения большого объема вычислений для получения обобщенной оценки путем синтеза всех плюсов и минусов по каждой альтернативе. На этом шаге решением ЗПР занимались специалисты, имеющие широкие знания как в области методов принятия решений, так и в программировании на ЭВМ.
Поскольку на практике указанное сочетание знаний является редким, возникла новая категория специалистов — аналитиков в области принятия решений. Аналитики владели методами принятия решений и навыками программирования и выступали в роли посредников между лицом, принимающим решение (ЛПР), и ЭВМ. Аналитик выполнял следующие функции: уточнял совместно с ЛПР постановку задачи, выбирал метод принятия решений, адекватный задаче, собирал необходимую статистическую и экспертную информацию, строил модель задачи, организовывал обработку накопленной информации на ЭВМ, представлял полученные результаты ЛПР и их интерпретировал.
Следующий шаг в применении ЭВМ для принятия решений был связан с созданием диалоговых систем, позволявших менять интересующие исследователя параметры заложенной в память ЭВМ модели задачи принятия решений, выбирать алгоритм поиска решения или его параметров, исследовать чувствительность полученного решения. Такие системы позволяли получать исчерпывающую информацию для всестороннего обоснования выбираемых решений.
В настоящее время в связи с возросшими возможностями современных ЭВМ разработаны программные информационные системы, обеспечивающие поддержку процесса принятия решений на всех его фазах. Большинство систем принятия решений реализовано на персональных ЭВМ.

1.2. Схема процесса принятия решений

Общая схема процесса принятия решений включает следующие основные этапы:
Этап 1. Предварительный анализ проблемы. На этом этапе определяются:
• главные цели;
• уровни рассмотрения, элементы и структура системы (процесса), типы связей;
• подсистемы, используемые ими основные ресурсы и критерии качества функционирования подсистем;
• основные противоречия, узкие места и ограничения.
Этап 2. Постановка задачи. Постановка конкретной ЗПР включает:
• формулирование задачи;
• определение типа задачи;
• определение множества альтернативных вариантов и основных критериев для выбора из них наилучших;
• выбор метода решения ЗПР.
Этап 3. Получение исходных данных. На данном этапе устанавливаются способы измерения альтернатив. Это либо сбор количественных (статистических) данных [9], либо методы математического или имитационного моделирования, либо методы экспертной оценки [10, 11]. В последнем случае необходимо решить задачи формирования группы экспертов, проведения экспертных опросов, предварительного анализа экспертных оценок.
Этап 4. Решение ЗПР с привлечением математических методов и вычислительной техники, экспертов и лица, принимающего решение. На этом этапе производятся математическая обработка исходной информации, ее уточнение и модификация в случае необходимости. Обработка информации может оказаться достаточно трудоемкой, при этом может возникнуть необходимость совершения нескольких итераций [12] и желание применить различные методы [13 — 16] для решения задачи. Поэтому именно на этом этапе возникает потребность в компьютерной поддержке процесса принятия решений, которая выполняется с помощью автоматизированных систем принятия решений.
Этап 5. Анализ и интерпретация полученных результатов. Полученные результаты могут оказаться неудовлетворительными и потребовать изменений в постановке ЗПР. В этом случае необходимо будет возвратиться на этап 2 или этап 1 и пройти заново весь путь. Решение ЗПР может занимать достаточно длительный промежуток времени, в течение которого окружение задачи может измениться и потребовать корректировок в постановке задачи, а также в исходных данных (например, могут появиться новые альтернативы, требующие введения новых критериев). Задачи принятия решений можно разделить на статические и динамические. К первым относятся задачи, которые не требуют многократного решения через короткие интервалы времени. К динамическим относятся ЗПР, которые возникают достаточно часто. Следовательно, итерационный характер процесса принятия решений можно считать закономерным, что подтверждает необходимость создания и использования эффективных систем компьютерной поддержки. ЗПР, требующие одного цикла, можно скорее считать исключением, чем правилом.

1.3. Классификация задач принятия решений

Задачи принятия решений отличаются большим многообразием, классифицировать их можно по различным признакам, характеризующим количество и качество доступной информации. В общем случае задачи принятия решений можно представить следующим набором информации [8, 17, 18]:
<Т, A, К, X, F, G, D>,
где Т— постановка задачи (например, выбрать лучшую альтернативу или упорядочить весь набор);
А — множество допустимых альтернативных вариантов;
К— множество критериев выбора;
Х— множество методов измерения предпочтений (например, использование различных шкал);
F— отображение множества допустимых альтернатив в множество критериальных оценок (исходы);
G — система предпочтений эксперта;
D — решающее правило, отражающее систему предпочтений.
Любой из элементов этого набора может служить классификационным признаком принятия решений.
Рассмотрим традиционные классификации:
1. По виду отображения F. Отображение множества А и К может иметь детерминированный характер, вероятностный или неопределенный вид, в соответствии с которым задачи принятия решений можно разделить на задачи в условиях риска и задачи в условиях неопределенности.
2. Мощность множества К. Множество критериев выбора может содержать один элемент или несколько. В соответствии с этим задачи принятия решений можно разделить на задачи со скалярным критерием и задачи с векторным критерием (многокритериальное принятие решений).
3. Тип системы G. Предпочтения могут формироваться одним лицом или коллективом, в зависимости от этого задачи принятия решений можно классифицировать на задачи индивидуального принятия решений и задачи коллективного принятия решений.
Задачи принятия решений в условиях определенности. К этому классу относятся задачи, для решения которых имеется достаточная и достоверная количественная информация. В этом случае с успехом применяются методы математического программирования, суть которых состоит в нахождении оптимальных решений на базе математической модели реального объекта. Основные условия применимости методов математического программирования следующие:
1. Задача должна быть хорошо формализована, т. е. имеется адекватная математическая модель реального объекта.
2. Существует некоторая единственная целевая функция (критерий оптимизации), позволяющая судить о качестве рассматриваемых альтернативных вариантов.
3. Имеется возможность количественной оценки значений целевой функции.
4. Задача имеет определенные степени свободы (ресурсы оптимизации), т. е. некоторые параметры функционирования системы, которые можно произвольно изменять в некоторых пределах в целях улучшения значений целевой функции.
Задачи в условиях риска. В тех случаях, когда возможные исходы можно описать с помощью некоторого вероятностного распределения, получаем задачи принятия решений в условиях риска. Для построения распределения вероятностей необходимо либо иметь в распоряжении статистические данные, либо привлекать знания экспертов. Обычно для решения задач этого типа применяются методы теории одномерной или многомерной полезности. Эти задачи занимают место на границе между задачами принятия решений в условиях определенности и неопределенности. Для решения этих задач привлекается вся доступная информация (количественная и качественная).
Задачи в условиях неопределенности. Эти задачи имеют место тогда, когда информация, необходимая для принятия решений, является неточной, неполной, неколичественной, а формальные модели исследуемой системы либо слишком сложны, либо отсутствуют. В таких случаях для решения задачи обычно привлекаются знания экспертов. В отличие от подхода, принятого в экспертных системах, для решения ЗПР знания экспертов обычно выражены в виде некоторых количественных данных, называемых предпочтениями.
Выбор и нетривиальность задач принятия решений. Следует отметить, что одним из условий существования задачи принятия решений является наличие нескольких допустимых альтернатив, из которых следует выбрать в некотором смысле лучшую. При наличии одной альтернативы, удовлетворяющей фиксированным условиям или ограничениям, задача принятия решений не имеет места.
Задача принятия решений называется тривиальной, если она характеризуется исключительно одним критерием К и всем альтернативам Аi приписаны конкретные числовые оценки в соответствии со значениями указанного критерия (рис. 1.1 а).

Рис. 1.1. Выбор альтернативы при одном критерии:
а — в условиях определенности; б — в условиях неопределенности;
в — в условиях риска

Задача принятия решений перестает быть тривиальной даже при одном критерии К, если каждой альтернативе Аi соответствует не точная оценка, а интервал возможных оценок (рис. 1.1 б) или распределение f(К/Аi) на значениях указанного критерия (рис. 1.1 в).
Нетривиальной считается задача при наличии нескольких критериев принятия решений (рис. 1.2) независимо от вида отображения множества альтернатив в множество критериальных оценок их последствий.


Рис. 1.2. Выбор альтернативы с учетом двух критериев: а — в случае непрерывной области альтернатив; б — в случае дискретных альтернатив

Следовательно, при наличии ситуации выбора, многокритери-альности и осуществлении выбора в условиях неопределенности или риска задача принятия решений является нетривиальной.

1.4. Классификация методов принятия решений

Существует множество классификаций методов принятия решений, основанных на применении различных признаков [10, 19 — 23]. В табл. 1.1 приведена одна из возможных классификаций, признаками которой являются содержание и тип получаемой экспертной информации.

Таблица 1.1

Классификация методов принятия решений
№ п/п
Содержание информации
Тип информации
Метод принятия решений
1
Экспертная информация не требуется

Метод доминирования [24, 25]
Метод на основе глобальных критериев [26, 27]
2

Информация о предпочтениях на множестве критериев

Качественная информация



Количественная оценка предпочтительности критериев



Количественная информация о замещениях

Лексикографическое упорядочение [24,25]
Сравнение разностей критериальных оценок [22,24]
Метод припасовывания [24]
Методы "эффективность-стоимость" [24,28]
Методы свертки на иерархии критериев [29,30]
Методы порогов [24, 31]
Методы идеальной точки [24]
Метод кривых безразличия [10,24] Методы теории ценности [10, 24]

3

Информация о предпочтительности альтернатив

Оценка предпочтительности парных сравнений

Методы математического программирования [32,33]
Линейная и нелинейная свертка при интерактивном способе определения ее параметров [34]

4


Информация о предпочтениях на множестве критериев и о последствиях альтернатив


Отсутствие информации о предпочтениях; количественная и/или интервальная информация о последствиях. Качественная информация о предпочтениях и количественная о последствиях

Качественная (порядковая) информация о предпочтениях и последствиях
Количественная информация о предпочтениях и последствиях

Методы с дискретизацией неопределенности [8,26]
Стохастическое доминирование [8,10,22]
Методы принятия решений в условиях риска и неопределенности на основе глобальных критериев [8, 35]
Метод анализа иерархий [36]
Методы теории нечетких множеств [7, 13, 14, 15, 17, 37]
Метод практического принятия решений [8, 24]
Методы выбора статистически ненадежных решений [8,38]
Методы кривых безразличия для принятия решений в условиях риска и неопределенности [8]
Методы деревьев решений [8,37]
Декомпозиционные методы теории ожидаемой полезности [8, 10,11]


Используемый принцип классификации позволяет достаточно четко выделить четыре большие группы методов, причем три группы относятся к принятию решений в условиях определенности, а четвертая — к принятию решений в условиях неопределенности. Из множества известных методов и подходов к принятию решений наибольший интерес представляют те, которые дают возможность учитывать многокритериальность и неопределенность, а также позволяют осуществлять выбор решений из множеств альтернатив различного типа при наличии критериев, имеющих разные типы шкал измерения (эти методы относятся к четвертой группе).
В свою очередь, среди методов, образующих четвертую группу, наиболее перспективными являются декомпозиционные методы теории ожидаемой полезности, методы анализа иерархий и теории нечетких множеств. Данный выбор определен тем, что эти методы в наибольшей степени удовлетворяют требованиям универсальности, учета многокритериальности выбора в условиях неопределенности из дискретного или непрерывного множества альтернатив, простоты подготовки и переработки экспертной информации.
Охарактеризовать достаточно полно все методы принятия решений, относящиеся к четвертой группе, в рамках данной работы невозможно, поэтому в дальнейшем рассматриваются только три подхода к принятию решений в условиях неопределенности, которые получили наиболее широкое воплощение в системах компьютерной поддержки, а именно: подходы, основанные на методах теории полезности, анализа иерархий и теории нечетких множеств.

1.5. Характеристика методов теории полезности

Декомпозиционные методы теории ожидаемой полезности получили наиболее широкое распространение среди группы аксиоматических методов принятия решений в условиях риска и неопределенности.
Основная идея этой теории состоит в получении количественных оценок полезности возможных исходов, которые являются следствиями процессов принятия решений. В дальнейшем на основании этих оценок можно выбрать наилучший исход. Для получения оценок полезности необходимо иметь информацию о предпочтениях лица, ответственного за принимаемое решение.
Парадигма анализа решения может быть сведена к процессу, включающему пять этапов [10].
Этап 1. Предварительный анализ. На этом этапе формулируется проблема и определяются возможные варианты действий, которые можно предпринять в процессе ее решения.
Этап 2. Структурный анализ. Этот этап предусматривает структуризацию проблемы на качественном уровне, на котором ЛПР намечает основные шаги процесса принятия решений и пытается упорядочить их в виде некоторой последовательности. Для этой цели строится дерево решений, (рис.1.3).


стр. 1
(всего 22)

СОДЕРЖАНИЕ

Вперед >>